TYPICAL APPLICATIONS

R1242S001A/B Typical Application, $V_{OUT} = 1.8\ V$, 330 kHz

R1242S001C/D Typical Application, $V_{OUT} = 1.2\ V$, 330 kHz

Recommended External Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>10\ \mu F</td>
<td>UMK325B106MM-P (TAIYO YUDEN)</td>
</tr>
<tr>
<td></td>
<td>10\ \mu F</td>
<td>CGA6P3X7S1H106K (TDK)</td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>22\ \mu F</td>
<td>GRM31CR71A226M (Murata)</td>
</tr>
<tr>
<td>C_{BST}</td>
<td>0.1\ \mu F</td>
<td>GRM21BB11H104KA01L (Murata)</td>
</tr>
<tr>
<td>L</td>
<td>4.7\ \mu H</td>
<td>VLF10045T-4R7N6R1 (TDK)</td>
</tr>
<tr>
<td>FET</td>
<td></td>
<td>TPN11003NL (TOSHIBA)</td>
</tr>
</tbody>
</table>
R1242S

NO. ED-191-170327

R1242S001A/B Typical Application, \(V_{OUT} = 1.2 \text{ V} \), 500 kHz

R1242S001E/F Typical Application, \(V_{OUT} = 1.2 \text{ V} \), 500 kHz

Recommended External Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{IN})</td>
<td>10 (\mu)F, UMK325BJ106MM-P (TAIYO YUDEN)</td>
<td>10 (\mu)F, CGA6P3X7S1H106K (TDK)</td>
</tr>
<tr>
<td>(C_{OUT})</td>
<td>22 (\mu)F, GRM31CR71A226M (Murata)</td>
<td></td>
</tr>
<tr>
<td>(C_{BST})</td>
<td>0.1 (\mu)F, GRM21BB11H104KA01L (Murata)</td>
<td></td>
</tr>
<tr>
<td>(L)</td>
<td>2.2 (\mu)H, RLF7030T-2R2M5R4 (TDK)</td>
<td></td>
</tr>
<tr>
<td>FET</td>
<td>TPN11003NL (TOSHIBA)</td>
<td></td>
</tr>
</tbody>
</table>

RICOH
R1242S001A/B Typical Application, \(V_{\text{OUT}} = 3.3 \text{ V}, 1000 \text{ kHz} \)

R1242S001G/H Typical Application, \(V_{\text{OUT}} = 3.3 \text{ V}, 1000 \text{ kHz} \)

Recommended External Components

- **\(C_{\text{IN}} \)**
 - 10 \(\mu \text{F} \), UMK325BJ106MM-P (TAIYO YUDEN)
 - 10 \(\mu \text{F} \), CGA6P3X7S1H106K (TDK)

- **\(C_{\text{OUT}} \)**
 - 10 \(\mu \text{F} \), GRM31CR71E106K (Murata)

- **\(C_{\text{BST}} \)**
 - 0.1 \(\mu \text{F} \), GRM21BB11H104KA01L (Murata)

- **\(L \)**
 - 4.7 \(\mu \text{H} \), VLF10045T-4R7N6R1 (TDK)

- **FET**
 - TPN11003NL (TOSHIBA)
TECHNICAL NOTES ON EXTERNAL COMPONENTS

- External components must be connected as close as possible to the ICs and their wiring must be short as possible. Especially, the capacitor must be connected with the shortest distance between VIN and GND pins. If the impedances of the power supply line and the GND line are high, the operation can be unstable due to the switching current which fluctuates the electric potential of the inside the ICs. The impedances of power supply line and GND line must be as low as possible. When designing their wirings, it is necessary to give careful consideration to the large current flowing into the power supply, GND, Lx, VOUT and inductor. The wiring of output voltage setting resistance (R1) and the wiring of inductor must be separated from load wiring.
- The ceramic capacitors with low ESR (Equivalent Series Resistance) must be used for the ICs. The recommended value for the Cin capacitor between VIN and GND is equal or more than 10 µF.
- The selections of inductor (L) and output capacitor (COUT) can be different according to the ICs' oscillation frequencies, output voltages and input voltages. Refer to “Recommended Value for Each Output Voltage” on the next page and select the most suitable values at the conditions of use.
- The internal phase compensation is built in the ICs; therefore, if the values selected are largely deviated from the recommended values, the operation may result in unstable.
- The over current protection circuit could be influenced by self-heating of the ICs and heat dissipation of the PCB environment.
- In order to prevent self-turning on, FET with smaller gate resistance and with smaller CGD/CGS (capacities between gate drains and the capacities between gate sources) should be selected.
- The output voltage (VOUT) can be calculated as $V_{OUT} = V_{FB} \times \frac{(R1 + R2)}{R2}$. The various voltage settings are possible by changing the values of R1 and R2. However, R2 value must be equal or less than 16 kΩ.
- RSPD prevents the deterioration in the regulation characteristics, which is caused by spike noise occurred in VOUT. Spike noise is largely depending on the PCB layout. If the PCB board layout is optimized, there is no need of RSPD; however, if the spike noise is a concern, RSPD with 15 Ω or so should be used.
- The ICs are not supporting Nonsynchronous rectification using a diode as a rectifier.
TECHNICAL NOTES ON PCB LAYOUT PATTERN

1. Make the power line (VIN and GND) broad to avoid the generation of the parasitic inductance. Place the bypass capacitor (CIN) between VIN and GND as close as possible to each other.
2. Make the wire between Lx pin and the inductor as short as possible to avoid the generation of the parasitic inductance. (This Evaluation Board is designed for the testing. Therefore, the inductor is large, a diode is connectable, and the large space is secured for Lx part.)
3. The ripple current passes through the output capacitor; therefore, if the COUT’s GND is placed in the outside of the CIN’s GND side and the IC’s GND, the IC can be easily affected by the noise.
4. Mount RUP, RBOT, CSPD and RSPD on the place where the FB pin is close and the inductor and the BST pin are away.
5. Start the feedback from where the output capacitor (COUT) is close.
1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.

2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.

3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.

4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh’s or any third party’s intellectual property rights or any other rights.

5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, space vehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.

6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damage to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.

7. Anti-radiation design is not implemented in the products described in this document.

8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.

9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.

10. There can be a variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.

11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH ELECTRONIC DEVICES CO., LTD.

Sales & Support Offices
RICOH ELECTRONIC DEVICES CO., LTD.
Higashi-Shinagawa Office (International Sales)
3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8695, Japan
Phone: +81-3-5479-2927 Fax: +81-3-5479-0526

RICOH EUROPE (NETHERLANDS) B.V.
Semiconductor Support Centre
Prof. W.H. Keesomaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309

RICOH INTERNATIONAL B.V. - German Branch
Semiconductor Sales and Support Centre
Oberbacher Strasse 5, 40472 Düsseldorf, Germany
Phone: +49-211-6546-0

RICOH ELECTRONIC DEVICES KOREA CO., LTD.
3F, Haesung Bldg, 534, Teheran-ro, Gangnam-gu, Seoul, 135-726, Korea
Phone: +82-2-2135-5700 Fax: +82-2-2051-6713

RICOH ELECTRONIC DEVICES SHANGHAI CO., LTD.
Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People’s Republic of China
Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH ELECTRONIC DEVICES CO., LTD.
Taipei office
Room 106, 10F-1, No.51, Hengyang Rd, Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623